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Abstract

In previous applications of high-velocity
superconducting cavities, the accelerated beam currents
were sufficiently high that the microphonics-induced
frequency excursions were significantly less than the
loaded bandwidth, and the power absorbed by the beam
dominated the total power requirement.  In new
applications (CEBAF Upgrade, RIA,) the beam currents
will be sufficiently low that the rf power requirements will
be dominated by the control of the cavity fields in the
presence of microphonics.  Active electronic damping of
microphonics by modulation of the cavity field amplitude
has been occasionally used in the past in small, low-
velocity, low-gradient superconducting structures; its
application to much larger, high-velocity, high-gradient
structures could result in a substantial reduction of the rf
power requirements.  This paper presents an analytical
study of various schemes for electronic damping and
presents formulae to quantify the reduction of
microphonics as a function of rf field modulation.

1 INTRODUCTION
One of the early challenges in the application of rf

superconductivity to particle accelerators, especially ion
accelerators, was the control and stabilization of the phase
and amplitude of the accelerating fields in the large
number of independent cavities. Ambient noise and
microphonics can cause frequency variations that are
larger than the bandwidth of the resonators.

Historically, high-velocity superconducting resonators
have been used in high-current applications where most of
the rf power was transferred to the beam.  Recently,
however, high-velocity elliptical-type resonators will be
used in applications where the beam loading will be small
and the need for phase and amplitude control will dictate
most or all the requirements for rf power.

In the case of no beam loading, the minimum amount of
rf power required for phase stabilization by negative
feedback is given by P U δω=  [1-3], where U is the

energy content at operating gradient, and δω is the
maximum amount of detuning at which phase lock is to
be maintained. δω  has two components: a static
component given by the accuracy with which the average
cavity resonance frequency can be matched to the master
reference frequency, and a dynamic component due to
microphonics-induced frequency excursions.  With a well-
designed mechanical tuning system, the static component

can be made much smaller than the dynamic component,
and any reduction of the microphonics would lead to a
corresponding reduction in the rf power requirements.

Mechanical stiffening of resonators is often used to
reduce the Lorentz detuning and may also reduce, to some
extent, the microphonics.  Mechanical damping has been
very effective in some low-velocity structures [4], but has
not yet been implemented in elliptical-type cavities.
Electronic damping has also been used in low-velocity
structures [2]; in this paper we present an analytical study
of electronic damping as a possible means of reducing
microphonics in superconducting cavities.

2 MODEL AND EQUATIONS
We will use the same model described in more details in

[1-3], namely a resonator operated in a self-excited loop.
In [1] it was found advantageous to operate the loop
slightly off resonance on the low frequency side ( 0lθ < );
this introduced a small amount of coupling between phase
and amplitude feedback which could be used to damp the
microphonics.  In [3] a feedback phase shifter ( fθ ) was
added that could be used to provide the same amount of
coupling while still operating the unlocked self-excited
loop on resonance ( 0lθ = ).

 A block diagram of such a configuration is shown in
Figure 1, and a transfer function representation of the
system is shown in Figure 2 where [3]:
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Gµ  represents the coupling between the field amplitude and

cavity frequency which is responsible for the
ponderomotive instabilities [1].  µΩ  is the frequency of the

mechanical mode of the cavity, and µτ  is its decay time.

Figure 1: Block diagram of a resonator operating in a self-
excited loop in the presence of beam loading with phase

and amplitude feedback

Figure 2: Transfer function representation of the system
shown in Figure 1.

The residual amplitude and phase errors due to
fluctuations of the cavity eigenfrequency ( exδω ), beam
current ( bvδ ) and beam phase ( bδϕ ) are
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3 PERFORMANCE OF STABILIZATION
SYSTEM

If we assume that the fluctuations in resonator field
phase and amplitude are due to fluctuations in cavity
eigenfrequency, and that these in turn are due to the
excitation of the mechanical mode by white noise of
spectral density 2A , then the mean square values for the
cavity frequency, and field amplitude and phase are given
by [1]:
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where  1( )ex a taaG - + DG GF ϕϕδω −=  and
1(1 )aex aaG + DGFϕ δω −= .

The mean square errors 2 2 and vδ δϕ< > < >can be
calculated in the most general case but we will present the
results under the following assumptions: no beam loading,
loop phase adjusted so the unlocked cavity operates on
resonance ( 0)lθ = , small feedback angle ( 1)fθ � , large

proportional feedback gains ( , 1,ak kϕ µτ Ω� ), and

/ 1µτ τ � :
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In the absence of feedback phase shift, microphonics do
not contribute to an amplitude error but cause a residual
rms phase error 2 1/ 2 1 2 1/ 2

exkϕδϕ τ δω−< > = < > .  Around 0fθ =

the amplitude error is quadratic while the phase error is
linear in fθ .  This suggests that, if one is willing to accept

a small amount of amplitude error, the phase error can be
reduced by introducing a phase shift in the feedback
signals ( 0)fθ ≠ .  This is shown conceptually in Figure 3.

This reduction in the residual phase error is a direct
result of the reduction of the fluctuation in cavity
frequency c ex µδω δω δω= + .  The amplitude variation vδ
causes a modulation of the cavity frequency µδω  through

the radiation pressure that can counteract the variation
exδω  due to microphonics.



Figure 3: Conceptual representation of residual
amplitude and phase errors as functions of the feedback
phase.  Both of them diverge as either the monotonic or
oscillatory stability boundary is approached.  See [1,3].

4 DAMPING BY FREQUENCY FEEDBACK
The effectiveness of microphonics damping as

described in the previous section depends on the amount
of amplitude feedback, and is reduced as the feedback
gain is increased.  A more effective way to damp
microphonics would be to intentionally modulate the
amplitude reference by an amount dependent on the
instantaneous frequency offset between the cavity and the
master reference, and with the appropriate phase shift in
order to act as a damping mechanism.

As shown in [3], in the absence of beam loading, and
with no feedback phase shift ( 0fθ = ), the signal driving

the resonator is of the form 1g go gV V v i tδ δ = + +  ,

where ( )= /g a av F v F V Eδ δ− = − −Ε , and E is the

amplitude reference.  A modulation of the amplitude
reference: ( )0= 1 eδΕ Ε +  introduces an additional term in

the signal driving the resonator:

( ) ( ) ( ) ( )1g a as F s e s Fδν δν δ= − + + .

When the phase feedback gain ( kϕ ) is sufficiently high,

the “in quadrature” feedback signal tδ  is directly
proportional to the instantaneous phase error which, in
turn, is proportional to the instantaneous difference
between cavity and reference frequency.  Thus  tδ  is an
appropriate signal to provide a modulation of the
amplitude reference: ( ) ( ) ( )e s F t s s F Fω ϕ ωδ δ δϕ=− = ,

where Fω is the frequency feedback transfer function.
In order to be effective as a damping mechanism, the

frequency feedback needs to introduce a π/2 phase shift
between the frequency error and the amplitude
modulation.  For this reason, a good choice for Fω is an
integral-type feedback of the form:

F k
s
µ

ω ω

Ω
= − .

The mean square frequency, phase, and amplitude
errors can be calculated as in the previous section and are:
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Figure 4: Block diagram with frequency feedback.

If K is the reduction in frequency fluctuation:
2
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, the amplitude modulation needed to

produce this reduction is: 
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Assuming K=2, ( )22 2 5exδω π< >= × , ( ) ( )2 22 2 300ok Vµ π= × ,

( ) ( )2 2
2 2 2 100 0.25Qµ π= × × × , gives 2 80.6 10δν −< > ; .

An amplitude modulation of less than 10-4 could reduce
the microphonics-induced frequency excursions, and the
rf power needed to control them, by a factor of 2.
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